Yoneda Embedding
Let \( \mathcal C \) be a (small) category. Then the Yoneda embedding is the functor \( \mathcal C \rightarrow [\mathcal C ^{op}, \Set] \). Note that the “contravariant Yoneda embedding” \( \mathcal C ^{op} \rightarrow [\mathcal C, \Set]\) is the Yoneda embedding of \( \mathcal C^{op}\). The “co-Yoneda embedding” (or dual Yoneda embedding) of \( \mathcal C \) is \( \mathcal C \rightarrow [\mathcal C, \Set]^{op}\), the dual functor of the Yoneda embedding of \( \mathcal C ^{op}\).
Let \( \mathcal C \) be a locally small category. The Yoneda embedding of \( \mathcal C \) is
\begin{equation*} \gamma \colon \mathcal C \rightarrow [\mathcal C ^{op}, \Set], X \mapsto \mathcal C(-,X). \end{equation*}Let \( \mathcal C \) be a locally small category. The co-Yoneda embedding of \( \mathcal C \) is
\begin{equation*} \gamma ' \colon \mathcal C \rightarrow [\mathcal C, \Set]^{op}, X \mapsto \mathcal C(X,-). \end{equation*}Let \( \mathcal C \) be a locally small category. Then:
- The Yoneda embedding \( \gamma \) is fully faithful (Yoneda lemma).
- \( \gamma \) preserves limits, ie \( \gamma \) is continuous.
- \( \gamma \) is the free cocompletion of \( \mathcal C \).
Let \( \mathcal C \) be a locally small category. Then:
- The co-Yoneda embedding \( \gamma ' \) is fully faithful.
- \( \gamma ' \) preserves colimits, ie \( \gamma ' \) is cocontinuous.
- \( \gamma ' \) is the free completion of \( \mathcal C \).