Ends and Coends
Table of Contents
Ends and coends are the \( 1 \)-categorification of the following idea: let \( G \) be a group and \( X \) be an object (say a set) equipped with a left and a right \( G \)-action. Then we can ask for the subobject on which left and right action agree (end) or for the quotient that forces left and right action to agree (coend).
Indeed a set with a left \( G \)-action is just a functor \(\boldsymbol{B}G \rightarrow \Set \) and a set with with a right \(G \)-action is a functor \(\boldsymbol B G^{op} \rightarrow \Set \).
1. Motivation of Ends
We start with coends and motivate them as a \( 1 \)-categorification of tensor products.
2. Different Definitions of Ends
Let \( F \colon \mathcal C ^{op} \times \mathcal C \rightarrow \mathcal D \) be a functor (known as a bifunctor from \( \mathcal C \) to \( \mathcal D \)). Then \( F \) defines two actions an the object
\begin{equation*} \prod _{c \in \mathcal C} F(c,c) \end{equation*}For every morphism \(f \colon a \rightarrow b \) in \(\mathcal C \) we get the morphisms
\begin{equation*} f^* \colon \prod _{c \in \mathcal C} F(c,c) \rightarrow \prod _{c \in \mathcal C} F(c,c), \; f_* \colon \prod _{c \in \mathcal C} F(c,c) \rightarrow \prod _{c \in \mathcal C} F(c,c) \end{equation*}that are induced by
\begin{equation*} \prod _{c \in \mathcal C} F(c,c) \xrightarrow{\pi _b} F(b,b) \xrightarrow{F(f,1_b)} F(a,b) \end{equation*}and
\begin{equation*} \prod _{c \in \mathcal C} F(c,c) \xrightarrow{\pi _a} F(a,a) \xrightarrow{F(f,1_b)} F(a,b) \end{equation*}2.1. Elementary Definition
2.2. Definition of Ends using Limits
2.3. Definition of Ends using Kan Extensions
2.4. Definition of Ends using Adjunctions
3. Different Definitions of Coends
3.1. Elementary Definition of Coends
Let \(F \colon \mathcal C ^{op} \times \mathcal C \rightarrow \mathcal D \) be a functor. A cowedge (of \(F \) or wrt \(F \)) consists of
- an object \( d \in \Ob \mathcal D \),
- a morphism \(\iota_c \colon F(c,c) \rightarrow d \) for every \(c \in \mathcal C \),
such that
for every morphism \(f \colon c \rightarrow c' \) in \(\mathcal C \)
\begin{equation*} \xymatrix{ F(c',c) \ar[r]^{F(f,1_{c})} \ar[d]_{F(1_{c'},f)} & F(c,c) \ar[d]^{\iota _c}\\ F(c',c') \ar[r]^{\iota _{c'}} & d } \end{equation*}commutes in \( \mathcal D\).
Alternatively we could define a cowedge to consist of an object \( d \) and a morphism \(\iota _f \colon F(c,c') \rightarrow d \) for every morphism \(f \colon c \rightarrow c' \) such that
\begin{equation*} \xymatrix{ d \ar[r]^{\iota _f} \ar[d]_{\iota _{g}} & F(c,c') \ar[d]^{F(1_c,g)}\\ F(c',c'') \ar[r]^{F(f,1_{c''})} & F(c,c'') } \end{equation*}commutes for every morphisms \(c \xrightarrow f c' \xrightarrow g c'' \). If we add the diagonal map \(\iota _{gf} \colon d \rightarrow F(c,c'') \) to the diagram we get two commuting triangles.