\( \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\uHom}{\,\underline{\!Hom\!}\,} \DeclareMathOperator{\Mor}{Mor} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\map}{map} \DeclareMathOperator*{\colim}{colim} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\comp}{comp} \DeclareMathOperator{\Fun}{Fun} \DeclareMathOperator{\true}{true} \DeclareMathOperator{\Sub}{Sub} \DeclareMathOperator{\Lan}{Lan} \DeclareMathOperator{\Ran}{Ran} \DeclareMathOperator{\PSh}{PSh} \DeclareMathOperator{\Sh}{Sh} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\Glue}{Glue} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\oneim}{1im} \DeclareMathOperator{\twoim}{2im} \DeclareMathOperator{\charr}{char} \DeclareMathOperator{\Spec}{Spec} \newcommand{\ProFinSet}{\mathrm{ProFinSet}} \newcommand{\sSet}{\mathrm{sSet}} \newcommand{\Top}{\mathrm{Top}} \newcommand{\deltacat}{\boldsymbol{\Delta}} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Set}{\mathrm{Set}} \newcommand{\Ring}{\mathrm{Ring}} \newcommand{\CatMon}{\mathrm{CatMon}} \newcommand{\Cof}{\mathrm{Cof}} \newcommand{\Fib}{\mathrm{Fib}} \newcommand{\Frm}{\mathrm{Frm}} \newcommand{\Loc}{\mathrm{Loc}}\)

Different Notions of a Topos

Table of Contents

1. TODO What notions are there? Elementary topoi, Grothendieck topoi, geometric topoi?

The first definition we give is just a copy of the definition in Chapter 4, Section 1 in “Sheaves in Geometry and Logic”. To us this doesn’t seem like the most natural definition neither like a least data definition.

A (elementary) topos \( \mathcal E \) consists of

  • a category \( \mathcal E \),
  • an object \( \Omega \) (called subobject classifier)
  • a function \( P \colon \Ob \mathcal E \rightarrow \Ob \mathcal E \) (called power object),
  • a natural isomorphism \( \Sub _{\mathcal E}(-) \cong \Hom _{\mathcal E}(-, \Omega) \),
  • a natural isomorphism \( \mathcal E(- \times B, \Omega) \cong \mathcal E(-,PB) \) for every object \( B \),

such that

  • \( \mathcal E \) has all finite limits.

2. QUESTION Is there a more natural definition of a topos?

3. TODO Least Data Definition of a Topos

A (elementary) topos \( \mathcal E \) consists of

  • a category \( \mathcal E \),
  • a functor \( P \colon \mathcal E ^{op} \rightarrow \mathcal E \),
  • a natural isormophism \( \Sub _{\mathcal E}(- \times B) \cong \mathcal E(-,PB) \) for every object \( B \),

such that

  • \( \mathcal E \) has all finite limits.

4. Elementary Definition of a Topos

A (elementary) topos \( \mathcal E \) consists of

  • a category \( \mathcal E \),
  • a pullback for every diagram \( A \rightarrow X \leftarrow B \),
  • a terminal object \( 1 \),
  • an object \( \Omega \) (subobject classifier),
  • a monomorphism \( \true \colon 1 \rightarrow \Omega \) (true element),
  • for every object \( B \) a object \( PB \) and a morphism \( \epsilon _B \colon PB \times B \rightarrow \Omega \) (evaluation),

such that

  • for every monomorphism \( f \colon A \rightarrow B \) there is a unique \( \char f \colon B \rightarrow \Omega \) such that
\begin{equation*} \xymatrix{ A \ar[r] \ar[d]_f & 1 \ar[d] ^{\true}\\ B \ar[r] ^{\exists! \char f} & \Omega } \end{equation*}

is a pullback diagram. Sometimes we just write \( \char A \) for \( \char f \) called the characteristic or classifiying map of \( f \),

  • for every morphism \( f \colon A \times B \rightarrow \Omega \) there is a unique morphism \( g \colon A \rightarrow PB \) such that

    \begin{equation*} \xymatrix{ A \times B \ar[rd]^f \ar[d] _{\id _B \times \exists ! g} & \\ PB \times B \ar[r] _{\epsilon _B} & \Omega } \end{equation*}

    commutes.

4.1. QUESTION How is \( \epsilon _B \) dinatural in \( B \) ?

4.2. QUESTION What is the functoriality of \( P \) ?

Author: Frederik Gebert

Created: 2025-02-10 Mon 21:45