\( \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\uHom}{\,\underline{\!Hom\!}\,} \DeclareMathOperator{\Mor}{Mor} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\map}{map} \DeclareMathOperator*{\colim}{colim} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\comp}{comp} \DeclareMathOperator{\Fun}{Fun} \DeclareMathOperator{\true}{true} \DeclareMathOperator{\Sub}{Sub} \DeclareMathOperator{\Lan}{Lan} \DeclareMathOperator{\Ran}{Ran} \DeclareMathOperator{\PSh}{PSh} \DeclareMathOperator{\Sh}{Sh} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\Glue}{Glue} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\oneim}{1im} \DeclareMathOperator{\twoim}{2im} \DeclareMathOperator{\charr}{char} \DeclareMathOperator{\Spec}{Spec} \newcommand{\ProFinSet}{\mathrm{ProFinSet}} \newcommand{\sSet}{\mathrm{sSet}} \newcommand{\Top}{\mathrm{Top}} \newcommand{\deltacat}{\boldsymbol{\Delta}} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Set}{\mathrm{Set}} \newcommand{\Ring}{\mathrm{Ring}} \newcommand{\CatMon}{\mathrm{CatMon}} \newcommand{\Cof}{\mathrm{Cof}} \newcommand{\Fib}{\mathrm{Fib}} \newcommand{\Frm}{\mathrm{Frm}} \newcommand{\Loc}{\mathrm{Loc}}\)

Fibrations and Anodyne Maps

Table of Contents

1. Fibrations

Fibrations are special functors between \(\infty \)-categories. We recall all notions of fibrations and collect results about fibrations.

Let \(p \colon X \rightarrow Y \) be a morphism of simplicial sets. \(p \) is a (left, right, inner) fibration if \(p \) has the RLP with respect to all (left, right, inner) horn inclusions. \(p \) is a trivial fibration if \(p \) has the RLP with respect to all boundary inclusions.

Joyal fibration isofibration

Let \(f \colon \mathcal C \rightarrow \mathcal D \) be a functor of \(\infty \)-categories. \(p \) is a Joyal fibration if \(p \) is an inner fibration that has the RLP with respect to the map \(\Delta^0 \rightarrow J \).

Let \(f \colon \mathcal C \rightarrow \mathcal D \) be a functor of \(\infty \)-categories. \(p \) is an isofibration if \(p \) is an inner fibration and every lifting problem

\begin{equation*} \xymatrix{ \{0\} \ar[r] \ar[d] & \mathcal C \ar[d] \\ \Delta^1 \ar[r]^f \ar@{-->}[ur] & \mathcal D } \end{equation*}

where \(f \) is an equivalence in \(\mathcal D \) has a solution that is an equivalence in \(\mathcal C \).

Left and right fibraitons between \(\infty \)-categories are conservative isofibrations.

Let \(p \colon \mathcal C \rightarrow \mathcal D \) and \(f \colon \mathcal D ' \rightarrow \mathcal D \) be a functors of \(\infty \)-categories. If \( p\) is a conservative inner fibraton, then the pullback \(f^*p \) of \(p \) along \(f \) is a conservative inner fibration. If \(p \) is an isofibration, then \(f^*p \) is an isofibration.

Let \(p \colon \mathcal C \rightarrow \mathcal D \) be a functor of \(\infty \)-categories. Then \(p \) is an inner fibration if and only if \(p \) is a Joyal fibration.

characterization of isofibrations (2.1.20, 2.1.21)

2. Anodyne Maps

Author: Frederik Gebert

Created: 2025-02-10 Mon 21:45