\( \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\uHom}{\,\underline{\!Hom\!}\,} \DeclareMathOperator{\Mor}{Mor} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\map}{map} \DeclareMathOperator*{\colim}{colim} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\comp}{comp} \DeclareMathOperator{\Fun}{Fun} \DeclareMathOperator{\true}{true} \DeclareMathOperator{\Sub}{Sub} \DeclareMathOperator{\Lan}{Lan} \DeclareMathOperator{\Ran}{Ran} \DeclareMathOperator{\PSh}{PSh} \DeclareMathOperator{\Sh}{Sh} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\Glue}{Glue} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\oneim}{1im} \DeclareMathOperator{\twoim}{2im} \DeclareMathOperator{\charr}{char} \DeclareMathOperator{\Spec}{Spec} \newcommand{\ProFinSet}{\mathrm{ProFinSet}} \newcommand{\sSet}{\mathrm{sSet}} \newcommand{\Top}{\mathrm{Top}} \newcommand{\deltacat}{\boldsymbol{\Delta}} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Set}{\mathrm{Set}} \newcommand{\Ring}{\mathrm{Ring}} \newcommand{\CatMon}{\mathrm{CatMon}} \newcommand{\Cof}{\mathrm{Cof}} \newcommand{\Fib}{\mathrm{Fib}} \newcommand{\Frm}{\mathrm{Frm}} \newcommand{\Loc}{\mathrm{Loc}}\)

\( \infty \)-Functors

Table of Contents

2.3.20

1. QUESTION Do we have \(h\Fun (\mathcal C, \mathcal D) = \Fun(h \mathcal C, h \mathcal D) \)? Or maybe we should talk about the nerve?

conservative functors

Let \(f \colon X \rightarrow Y \) be a morphism of simplicial sets such that \(f_0 \colon X_0 \rightarrow Y_0 \) is bijective. Then the functor \( f^* \colon \Fun(Y, \mathcal C) \rightarrow \Fun(X, \mathcal C) \) is conservative for every \(\infty \)-category \(\mathcal C \).

Let \(X \) be a simplicial set and \(\mathcal C \) an \(\infty \)-category. Then the functor \(\operatorname{ev} \colon \Fun(X, \mathcal C) \rightarrow \prod _{x \in K_0} \mathcal C \) is conservative. If \(F \colon X \times \Delta^1 \rightarrow \mathcal C \) is a natural transformation between functor, then \(F \) is a natural equivalence (equivalence in \(\Fun(X, \mathcal C) \)) if and only if \(F_x \colon \Delta^1 \rightarrow \mathcal C \) is an equivalence (in \(\mathcal C \)) for every \(x \in K_0 \).

Author: Frederik Gebert

Created: 2025-02-10 Mon 21:45