\( \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\uHom}{\,\underline{\!Hom\!}\,} \DeclareMathOperator{\Mor}{Mor} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\map}{map} \DeclareMathOperator*{\colim}{colim} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\comp}{comp} \DeclareMathOperator{\Fun}{Fun} \DeclareMathOperator{\true}{true} \DeclareMathOperator{\Sub}{Sub} \DeclareMathOperator{\Lan}{Lan} \DeclareMathOperator{\Ran}{Ran} \DeclareMathOperator{\PSh}{PSh} \DeclareMathOperator{\Sh}{Sh} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\Glue}{Glue} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\oneim}{1im} \DeclareMathOperator{\twoim}{2im} \DeclareMathOperator{\charr}{char} \DeclareMathOperator{\Spec}{Spec} \newcommand{\ProFinSet}{\mathrm{ProFinSet}} \newcommand{\sSet}{\mathrm{sSet}} \newcommand{\Top}{\mathrm{Top}} \newcommand{\deltacat}{\boldsymbol{\Delta}} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Set}{\mathrm{Set}} \newcommand{\Ring}{\mathrm{Ring}} \newcommand{\CatMon}{\mathrm{CatMon}} \newcommand{\Cof}{\mathrm{Cof}} \newcommand{\Fib}{\mathrm{Fib}} \newcommand{\Frm}{\mathrm{Frm}} \newcommand{\Loc}{\mathrm{Loc}}\)

Straightening for 1-Categories (Grothendieck Construction)

Table of Contents

The Grothendieck construction is a special case of a very general question. In any category (or context) it is natural to ask which morphisms

\begin{equation*} \xymatrix{ E \ar[d]^p\\ B } \end{equation*}

arise as a pullback along a classifying morphism \(c_p \colon B \rightarrow U \) to some universal object \(U \) of some universal morphism \(V \rightarrow U \). The Grothendieck construction describes this in the context of \(\Cat \). A functor \(p \colon \mathcal E \rightarrow \mathcal B \) is a Grothendieck fibration if and only if it is a pullback along \(\int_p \colon \mathcal B ^{op} \rightarrow \Cat \) of

1. QUESTION What is the universal morphism here?

Let \( p \colon \mathcal E \rightarrow \mathcal B \) be a functor of \( 1 \)-categories. \( p \) is a (Grothendieck) fibration (fibered category) if for every object \( y \in \mathcal E \) every morphism to \( p(y) \) lifts to a cartesion morphism in \( \mathcal E \). Explicitly for every object \(y \in \mathcal E \) every morphism \(g \colon z \rightarrow p(y) \) there is \(f \colon x \rightarrow y \) with \(p(f) = g \) such that every diagram of the below form has a unique lift:

\begin{equation*} \xymatrix{ \mathcal E \ar@{->}[ddd]_{p} & x' \ar@{->}[rd]^{h} \ar@{-->}[d]_{\exists! u} & \\ & x \ar@{->}[r]^{f} & y \\ & p(x') \ar@{->}[d]_{v} \ar@{->}[rd] & \\ \mathcal B & p(x) \ar@{->}[r]_{p(f) = g} & p(y) } \end{equation*}

Let \(p \colon \mathcal E \rightarrow \mathcal B \) be a \(1 \)-functor. Then \(p \) is a fibration if and only if for every object \(y \in \mathcal E \) the canonical section \(s \colon \mathcal B _{/p(y)} \rightarrow \mathcal E _{/y} \) is an almost functor.

Proof.

Let \(F \colon \mathcal B ^{op} \rightarrow \Cat \) be a pseudofunctor of

discrete (op)fibration

discrete (op)fibrations are equivalent to (co)presheaves. Representable presheaves correspond to slices

categories fibered in groupoids

Author: Frederik Gebert

Created: 2025-02-10 Mon 21:45