Enriched Categories
Table of Contents
Let \( (\mathcal V, \otimes, 1) \) be a symmetric monoidal category. An \( \mathcal V \)-enriched category \( \mathcal C \) consists of
- a collection \( \Ob \mathcal C \) of objects,
- an hom-object \( \mathcal C(x,y) \) for all objects \( x, y \in \Ob \mathcal C \),
- an identity morphism \( 1_x \colon 1 \rightarrow \mathcal C(x,x) \) for every object \( x in \Ob \mathcal C \),
- a composition morphism \( \circ _{x,y,z} \colon \mathcal C(y,z) \otimes \mathcal C(x,y) \rightarrow \mathcal C(x,z) \) in \( \mathcal V \) for all objects \( x,y,z \in \Ob \mathcal C \)
such that
composition is associative:
\begin{equation*} \xymatrix{ \mathcal C(y,z) \otimes \mathcal C(x,y) \otimes \mathcal C(w,x) \ar@{->}[d]_{\circ \otimes 1} \ar@{->}[r]^{1 \otimes \circ} & \mathcal C(y,z) \otimes \mathcal C(w,y) \ar@{->}[d]^{\circ} \\ \mathcal C(x,z) \otimes \mathcal C(w,x) \ar@{->}[r]^{\circ} & \mathcal C(w,z)} \end{equation*}commutes in \(\mathcal V \).
composition is unital:
\begin{equation*} \xymatrix{ \mathcal C(x,y) \otimes I \ar@{->}[r]^{1 \otimes 1_x} \ar@{->}[rd]_{r} & \mathcal C(x,y) \otimes \mathcal C(x,x) \ar@{->}[d]^{\circ} \\ & \mathcal C(x,y)} \xymatrix{ I \otimes \mathcal C(x,y) \ar@{->}[r]^{1_y \otimes 1} \ar@{->}[rd]_{l} & \mathcal C(y,y) \otimes \mathcal C(x,y) \ar@{->}[d]^{\circ} \\ & \mathcal C(x,y)} \end{equation*}commute in \( \mathcal V \) where \( l \) and \( r \) are the left and right unitors of \( \mathcal V \).
1. Examples of Enriched Categories
1.1. Closed Symmetric Monoidal Category
Let \( \mathcal V \) be a closed symmetric monoidal category. Then \( \mathcal V \) is canonically \( \mathcal V \)-enriched via the internal hom:
- the hom-object is the internal hom \( \mathcal V(x,y) \),
- the identity morphism \( 1_x \colon 1 \rightarrow \mathcal V(x,x) \) is induced by the left unitor \( l \colon 1 \otimes x \rightarrow x \) via the \( \otimes \)-hom adjunction,
- composition \( \circ \colon \mathcal V(y,z) \otimes \mathcal V(x,y) \rightarrow \mathcal V(x,z) \) is induced by